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Asymptotic Magnetic Behavior 
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The nonvanishing elements of the viscosity and thermal conductivity tensors 
of polyatomic gases fall into two classes: those that change sign with a 
rotation about the magnetic field line and those that do not. It is shown 
that the boundedness of the linearized Waldmann-Snider collision operator 
and its properties under symmetry transformations imply that for linear 
Zeeman splitting the first class vanishes at zero and infinite field as ~ B ! and 
]B [-1 and that the second class approaches its asymptotes as i B 2 and 
I BI -~, 
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1. I N T R O D U C T I O N  

In the last decade a very p romis ing  line of  research has been concerned 
with the var ia t ion  o f  t r anspor t  coefficients with magnet ic  field s t r eng th - - t he  
Senf t l eben-Beenakker  effect, m The interest  stems f rom the fact  tha t  in 
con t ras t  to the gross viscosity and thermal  conduct iv i ty  coefficients, which 
depend  p r imar i ly  on the spherical  pa r t  of  the molecular  in teract ion,  the 
magnet ic  shifts occur  only i f  col l iding molecules can reorient ,  and  this in turn 
requires molecules  in teract ions  with some degree of  an iso t ropy.  On the 
whole,  the shape o f  the magnet ic  dependence  is predic ted  ra ther  well with a 
kinet ic  theory  (~,3) employ ing  simple tr ial  functions,  14-6) a l though some 
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discrepancies are now apparent.(7,81 However, other than a classical analog, (9) 
the general theory has not yet been used to calculate individual cross sections, 
although it has had impressive success in correlating Senftleben-Beenakker 
cross sections with other experiments. (v,l~ 

The assumption of a simple trial function for the molecular distribution 
function is equivalent to postulating a definite class of molecular models. In 
the case of the present theories (4,6) this model can be interpreted as a weak- 
coupling model in which only one type of angular momentum anisotropy is 
coupled to the orientation-independent part of the velocity-angular 
momentum distribution. This assumption leads directly to the well-known 
double frequency dependence found in most experiments. (1,1~ 

The degree of dependence of these phenomena on the particular 
molecular or kinetic model has not been established. In this paper we show 
that the boundedness of the original Waldmann-Snider linearized collision 
operator (2,3) in a particular metric and its behavior under symmetry trans- 
formations partially determine the asymptotic behavior of the usual transport 
coefficients as functions of magnetic field. The next section summarizes the 
kinetic theory required, identifies the tensor elements comprising the transport 
coefficients as certain inner products of vectors in a Hilbert space, and intro- 
duces two ways of partitioning the space that leave the elements of interest 
unchanged. The third section then proves the boundedness of the collision 
operator and determines the asymptotic behavior using the theory of per- 
turbations of linear operators. (1~) The physical picture of the Senftleben- 
Beenakker effect is that a magnetic field induces a precession of the angular 
momentum about the field direction and at high fields tends to average out 
the angular momentum components perpendicular to the field. The bounded- 
ness property merely implies that the system cannot relax infinitely quickly 
and at some point cannot counteract the averaging due to the precession. 
The symmetry properties divide the elements of the transport coefficient 
tensors into three types: thos e for which the magnetic shifts vanish identically; 
those which are even functions of the magnetic field strength; and those which 
are odd and vanish at zero and infinite field strength. This seems to be as 
much as can be said without further specifying the molecular model. 

The possibility of putting rigorous bounds on transport property 
calculations is also considered briefly and it is concluded that it is not feasible 
for simple approximations. 

2. K I N E T I C  T H E O R Y  P R E L I M I N A R I E S  

In certain cases (2,3,13) the full quantum density matrix may be replaced 
by a semiclassical density matrix f .  We shall adopt Snider's formulation (31 
where f is a Wigner function, a classical function of the translational degrees 
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of freedom but still a quantum density matrix in the internal degrees of 
freedom. Here we shall consider only rotation. If  the mean flight time is much 
less than the inverse frequencies corresponding to the energy splittings of the 
principal quantum numbers ( j  for a diatomic molecule or j, k for a symmetric 
top), the phase of the off-diagonal elements will oscillate many times between 
collisions. We may then justify the further approximation that the density 
matrix is diagonal in the principal quantum numbers. (2,~3) This approxima- 
tion allows an H-theorem, (~4) i.e., irreversibility. 

For  each dynamic variable an operator A is now defined that is classical 
in the translational degrees of freedom and quantum in the internal ones. (~5~ 
The local average of A is then determined by 

.4 = tr f dSpf(r, v, t)A 

j km 

(1) 

where tr is the trace operation taken over a complete set of wave functions 
r that span the wave function space for the internal degrees of freedom. 
Then ( . . . )  is the inner product of this wave function space. The distribution 
function may now be separated into two parts: a Maxwell distribution f(0) 
normalized to yield the correct local velocity %,  and number and energy 
density, and a perturbation 4: 

f =/(~ + 4) (2) 

f(o) is self-adjoint in the wave function space, i.e., f(0)t __fro), where A* is 
the adjoint of A. Since the distribution function or density matrix should 
be', self-adjoint, 

f(o)r = r (3) 

This allows averages of operators vanishing at equilibrium to be written as (16) 

f d3pr176 =~ (r A) = (A, 4)* (4) tr 

where p is the momentum. The inner product (..., ...) may be used to define a 
vector or Hilbert space of operators in which are imbedded the permissible 
distribution functions and operators corresponding to dynamic variables with 
fi~ite thermodynamic averages. (1G) This space of operators, spanned, say, 
by the set {ui}i~z, is equivalent to the Schmidt class a(c) (~7) the set of  com- 
pletely continuous operators {wi}i~l, if the correspondence w = (f(~ is 
made. (16) Let us call this space 9~. By an extension of the Chapman-Enskog 



224 L. Monchick 

method, it is found that through terms linear in gradients of density, tem- 
perature, and velocity, r in the field-free case is determined by 

~er = --g (5) 

c f  is a "superoperator ''3 which is dissipative, (~") i.e., Re(u, ~ u )  ~ 0, Vu, and 
whose effect on r is 

:~Pr = (27r)4h 2 t r ,  f d " p l f ~  ~ I f  d"p ' f  d~pl ' t : : ' ( + ' +  +l ') 

1 ~ I • a(E) a(V0M)t:J ~- ~ -  [t~(r + r -- (r + r (6) 

r is shorthand for r the subscript 1 denotes the variable of another 
molecule colliding with the one being fbllowed; 8(E) and 8(p~M) are Dirac 
delta function operators inserted to conserve energy and center-of-mass 
momentum; t~:' is the translational momentum matrix element of the tran- 
sition operator t; and v~ and v,.' are the relative velocities before and after 
collision. We write g as a self-adjoint operator that to first order describes 
the rate of change of r due to the net drift from neighboring regions of phase 
space. In the presence of a temperature gradient <a) g takes the form 
where 

g : (__2kT)~/2 IW2 j +  }_ ~ 5  1 [ H i n t -  (Hint, I)]I W ' A  In T 
(6a) 

g~r ?-~x In T 

where 

W =-- (m/ZkT) 1/2 (v -- v0) (6b) 

m is the molecular mass, T is the temperature, Hint is the rotational Hamilto- 
nian, and v is the velocity. The repeated Greek index summation convention 
is used. When shear flow is present (4) 

g =- 2 (W~W~ -- �89 W ~ )  S~B =- g~BS~ (7a) 

= ~ ~ 1  ( ~v0~ eVo~ ~ 3~y 0v0~ (7b) S~ 
2 t  ~y + vx  ; 3 ex~ 

3 u is the Kronecker delta. In a magnetic field Eq. (5) must be replaced by <5) 

J~q5 = (Sq + J / ) r  ----- --g (8a) 

~Mc} ~ (i/h)[HB, r (ab) 

where ~M describes the precession about the field axis, [, ]_ is the com- 
mutator, and Hv ,  the Hamiltonian for the interaction of the field and the 
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magnetic moment, is necessarily Hermitian. Here ~ is a parameter chosen 
to be proportional to the magnetic field strength. 

The ith component of the heat flux is given by 

qi = - -k - l ( (~ ,  gi T) = --)io~ OT/axc~ (9) 

a~:~ = - -k  l(~-agjr ,  gir) ,  i, j = x ,  y ,  z (10) 

Similarly, the shear part of the pressure tensor is given by 

I-t = 13 : S (11) 

"Oi~.,a = - - ( 2 k  T)-l(,~f~-lgSz , gS.) (12) 

Thus each of the components of the thermal conductivity and shear viscosity 
tensors may be expressed as an inner product of vectors in o~. 

At zero field strength J0 = ~ is spherically symmetric and from the 
symmetry under rotational transformations it is not difficult to show that Z 
and ~ reduce to scalars. In nonvanishing fields, however, ~ will only have 
cylindrical symmetry about the field direction, taken here to be the z axis. 
Again considering the transformations under infinitesimal rotations, it can 
be shown that the tensors Z and ~7 have the form required by the phenomenol- 
ogJical theory, as) These relationships have been displayed so often a,m that 
there is no need to do so here. 

It is now convenient to write JM as 

JM = ~ (13) 

where ~ is a scalar proportional to the field strength and ~ is a superoperator. 
In the inner product space s/t ~ the adjoint of a superoperator will be designated 
by the superscript ?{. The cyclic character of the trace operation and the 
Hermitian character of HF may now be used to show that Y is anti- (or 
skew-) symmetric: 

~ *  = - -~-  (14) 

As a consequence, all diagonal matrix elements of Y are pure imaginary and 
so ~ is dissipative if 5~ is. This means, too, that /z  (Re/z > 0) is still in the 
resolvent set of J~ .  For diatomic and spherical molecules ~ takes the 
particularly simple form 

g = i[J~ ,1_ (15) 

= I B igrotlXN/h (16) 

where J is the angular momentum operator, B is the magnetic field, g~ot is the 
rotational g factor, and #U is the nuclear magneton. The form for symmetric 
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and asymmetric tops is more complicated but can be calculated from the 
gyromagnetic tensor. (jg,~~ But for our purposes it is sufficient to note that 
the maximum effect of o ~ is to multiply r by a polynomial in J. This means 
that ~ is bounded in the sense that the norm of ~- in ~ ,  II ~ -  I1, is bounded: 

II o~ II = max[(~-u, ~u)l/~/(u, u)] 

~< const • [(I J I'*u, ] J I~u)1/2/( u, u)l/q 

= O(([J[~'~}o), Vu in ~"  07) 

where the brackets with subscript zero denote an equilibrium average. 
Moreover, since He commutes with all operator functions of j2 and W, o~ 
has a sizable null space. This null space, then, is not affected by a magnetic 
field and may be expected to be the only part of ~ remaining at large field 
strengths. For  diatomic and spherical molecules this null space may be 
identified as the operator functions of W, j2, and J~, i.e., operators diagonal 
in all quantum numbers, magnetic as well as principal. Since io ~ is bounded 
and symmetric, operators in the null space are orthogonal to those that are 
not. Denoting the null space and its orthogonal complement by ~0 and 
and the associated projection superoperators by ~ and ~ ,  we have 

~ = ~ |  H =  ~ . + ~  (is) 

Another useful way of partioning ~ is suggested by the work of Levi 
and McCourt/5) Define d as a superoperator that reverses the sign of all 
angular momenta, magnetic moments, and magnetic fields. This may be 
regarded as the successive operation of space inversion and time reversalJ 5,14~ 
Again ~ may be partitioned into two mutually orthogonal sets of operators, 
namely the operators even and odd, respectively, in J. These will be denoted 
by ~ +  and ~ _ ,  and the associated projection superoperators by ~+ and ~ _ .  
We then have that 

w=w+| H = ~ + + ~ ,  

Levi and McCourt  (5) then show that 

~'~:L~ = ~ •  (19) 

(20) 

(21) 

The adjoint of 2,o has been given elsewhere. 1161 Equations (20) and (21) 
imply that ~((~+ and J~_ are reducing spaces (21) for o~ and the symmetric 
part of s c~o = �89162 + .s That  is, ~ + ~ , ~ _  = ~ _ s  = ~ + y ~ _  = 
~ _ ~ ' ~ +  = 0. Similarly, the antisymmetric part of  5~, 2,e a =- �89 _ f , )  = 
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-Ar has no nonvanishing matrix elements within JY+ or ~_ :  ~ + ~ +  = 

.~_~5~_ = o. 
The kinetic theory presented here is a partial rephrasing of the usual 

formulas. 11,~-6) Its chief advantage, useful in the next section, is that the 
coefficients are functionals of vectors in a Hilbert space. Another, the 
simplicity of the indexing notation, is partly due to the fact that a matrix 
representation of ~ or a vector expansion of ,d, is not attempted�9 

3. A S Y M P T O T I C  PROPERTIES  

The quantity r is restricted to the orthogonal complement of the null 
space of J~ becausef  I~ is already normalized to yield the local density of the 
collisional invariants, mass, momentum, and energy. At zero field angular 
momentum may also be added with suitable modifications of 5f. (~,22) 
Furthermore, we shall assume that ~ ~ 0 is in the resolvent set of ~ and ~ , ,  
or at least that (/x -- ~ ) - 1  and (/x -- 5e~)-1 exist in the limit Re /x ~ 0 + .  
Since the operators g, gu r, and g S  (u, v = x, y, z) all lie in the intersection of 
~ +  and JY~, one need only consider the projection of r on either of these 
two subspaces or on the region where they intersect. For simplicity we may 
drop the indices u, v, T, and S and consider matrix elements of the form 

~(g, h) = - - ( ~ - ~ ,  h) = (4,(~), h) (22) 

where g and 17 are Hermitian operators in ~ +  c~ ~ .  By forming the adjoint 
o f f ( ~ 1 6 2  in wave function space, it is evident that Eq. (3) holds because 
g is Hermitian. The cyclic property of traces and the Hermitian character o f  
h then imply that ~:~ is real. 

We now wish to argue that ~ is bounded in the metric, (..., -..). This is 
equivalent to the statement that no infinitely fast relaxation processes exist. 
A definition of the norm of 2#, equivalent to Eq. (17), is 

i(r ~r r r c ~ (23) II ~ ]1 = max ( r  r162 r 

By interchange of particles and energy and momentum conservation and 
remembering that f (0~ commutes with t, we have 

]zklmz Jek~m~ 

�9 ~" A . - t * ~ t  (24)  
�9 ~ 3 r  

c}~ ~ (f~o))~/2 (f~o))w2[r + r (25) 
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I(1) and I(2) are unit operators in the wave function space of molecules 1 
and 2. It is evident that if (f(o)),/2 0 is in the Schmidt class a(c), the operator 
in the product space, (f[o)),/2 (f~o)),/z(o,~r ' is too. Let us call the product 
space a,2(e). We note that 6~ is diagonal in energy and that the only elements 
appearing of t~;' are on the energy shell. They are thus projections of  
(2r - -  S], where S is the S-matrix. As is well known, S is unitary 
and thus bounded (for real momenta) in wave function space. Since products 
of a Schmidt class operator and a bounded operator are still in crz~(c) (Ref. 16, 
Lemma II 3iv), the quantity in curly brackets in Eq. (24) is also in ~,2(c). 
This implies that s is in e(c) and thus that 5e is bounded. This property is 
very convenient because the resolvent 

.~(2p + ~ y ,  0 + )  <= lim (/z -- 5e -- ~ - ) -~  
P~0-? 

is now expandable as a power series in ~ (Ref. 12, Section VI 3.3), implying 
that the asymptote of ~bg(~) as ~ ~ 0 is well defined. 

Let q~go(~) and r be the projections of q~g(~) on x/g o and Jr+.  With 
the partitioning method introduced by Zwanzig (23) and found useful elsewhere 
in transport calculations, (24,z5) q~g0(~) is determined formally by 

(26) 

The inverse in (26) is really to be regarded as (~la § ~ -  -- 0 )-z. With 
this and the boundedness of 5e~r the second term of the reduced superoperator 
in Eq. (26) exists and is well defined. The resolvent of (~- 6- ~ - ~ 1 )  may now 
be expanded in powers of ~ - l ~ z  and the asymptotic equation for ~b~~ 
becomes 

r  _~o0~g ~ _ ~ - ~  ~ - _ ~ o  . ~" - -  g ~ 0 0  ~ o ~  ~ ~ o  ~ 6 -  O ( ~  -2)  ( 2 7 )  

At large field strengths r vanishes: 

r = #1r = - ( ~ 1  + ~ - ) - , ~ 0 r  0(~) 

= o(~-1),  ~ - +  o0 (28) 

This is equivalent in the elementary theory (2~) to a partial averaging of the 
~, 9 polarization of the angular momenta, and in terms of the expansion of q~ 
in spherical harmonics ~,,(j),a0.27) to the vanishing of all terms with m =/= 0. 

It has already been established that the elements of the viscosity and 
thermal conductivity tensors may be written as --(J?-Zg, h). It is well 
known (~,~s) that these fall into one of three groups: those that vanish iden- 
tically and those that are even or odd with respect to interchanges o f g  and h. 
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This can be verified quickly by studying the behavior under infinitesimal 
rotational transformations. In the following it will prove convenient to study 
the latter two groups separately and to carry out the manipulations formally 
since they can be justified in a manner similar to that above. The separation 
into even and odd groups was also found useful by Beenakker e t  al. ~zs~ 

3.1. Odd Tensor Elements 

Here we partition r into its components qSg+ and Cg-. With an easy 
extension of the notation of Eq. (26) 

[(5(', + ~- )++ -- .s162 q- ~ow)-~_+]qS~+(~) = --g (29) 

= ~ -1 s + G-(~) - - ( G - -  + ~ - - )  o-+G (~) (30) 

It is evident from (29) and (30) that the odd-in-a components contribute 
only in second order to k and ~. With these relationships and the fact that 
the odd tensor elements change sign when g and h are interchanged we have 
that 

G,~(~) ( j ~ l g ,  h) - lh = = _  = ( j ~  , g )  (g, d71h)  

• zfo+_]G+(~)) (31) 

w]here the third equality is due to the real character of ~,j, established earlier. 
As ~ -~ 0 the odd tensor elements approach zero with finite slope. 

To evaluate the asymptotic behavior as ~-+ oo, it is necessary to 
evaluate ~(Se~__ § ~o~__)-~j where i or j or both equal one. The sub- 
scripts -- may be dropped in the following as long as they are understood. 
It is not difficult to show the asymptotic properties of .~(sr + ~M, 0 + )  
(a~ and ~ bounded) that the following hold: 

~0( ~t9 -~ ~,-~)-1~o = (~o0 -- ~-1,-*~01(~11~-1 -Jr- -~--)-1~10)-1 

= 5r ~ q- O(~ -~) (32a) 

& ( z e  + ~ - ) - ~  = _ ~-~(~0o - ~ - ~ G ~ d e .  + ~ ) - 1 ~ o )  -~ 

X ~01(t--1~11 ~- ff)--I 
= O(g-*) (32b) 

G ( ~ e  + ~ ) - ~ o  = - ~ - ~ ( ~  § ~-~(G~ - ~ o ~ g o ~ o O ) - ~ G ~ o o  ~ 

= O(~ -1) (32c) 

8zz /o  / 3-3 
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~ ( ~  + ; . ~ ) - I ~  = ~-~(~- + r  _ ~oXeo0~eo0)-a 

= O(~-~)" (32d) 
With (32b)-(32d) we see that 

~:,~(~) = ~(4,,,+(~), ~-q~+(~)) + O(~ -~) (33) 

By the same argument that yielded Eq. (28), we may infer that ~q~+(~) and 
~b~+(~) are both of order ~-~, which in turn implies that all odd tensor 
elements vanish at least as quickly as ~-~ as ~ --~ oo. 

3.2. Even Tensor  E lements  

Tensor elements that do not change sign when g and h are interchanged 
may always be expressed as linear combinations of diagonal matrix elements 
of the form 

~o(~) ~ (d?o(~), g )  = - -  ( j ~ l g ,  g )  (34) 

Since ~:g is real (see above), 9~ may be replaced by an associated density 
matrix ~ ]161 

(~(~), e) = Re(~(~) ,  g) = (~(~) ,  g) (35) 

~e~o(~ ) = --g (36) 

~ j , q ~ l ~  = J ~ a  - ~  * (37) 

where ~ is not only still dissipative, but now symmetric. By the assumption 
on ~ ( ~ ,  0§  it is also bounded. The limiting form as ~ ~ 0 is 

~ o ( 0 )  = --g (38) 

Since -Jg = g and d~c-Pd -~ = s = 5r  5e~21s ~r and Jr_ are 
reducing spaces for ~ and ~g(0) lies in ~ + .  It is thus identical with q~g+(0). 
The same construction can be carried out at infinite field strength, with the 
result 

~oo('~q~oo)-ZLPoo,~g(oo) = (s -- 5e~oo(~oo)-~s = --g (39) 

~+~o(oo) = ~(az)  (40) 

From the Rayleigh-Ritz lower bound formula 

se~(0) == --(g, ff'-ag) >~ (g, (~oo)-~g) (41) 

and the upper bound formula a6,~9~ 

5eooA~ >~ ~oSq*~aSr = ~oo (42) 

~(o~) = - (g ,  (~Oo*o(~oo)-~eoo)-~g) >~ - (~ ,  (~oo)-~g) 
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it is impossible, without further input, to determine the direction of the 
Senftleben-Beenakker shift unless 50  = 0. In this particular case we find that 
seo(oo) ~< ~(0), as well as the more general result that the decrease is mono- 
tonic. This will be more obvious in the following. 

It is convenient to separate o~ into the sum of three self-adjoint 
operators: 

o~ = ~ + ~ q- ~ 25a (43a) 

c j  = y s  = 5~* = dSPag  -1 (43c) 

Since 5r is dissipative, Y is, too. It is also apparent that Y+ and ~ are 
reducing spaces for 9 ~ as well as for ~q' and 5r Although .~ itself cannot be 
said to be entirely dissipative or accretive, the following discussion indicates 
that its net effect on ~g is accretive. 

Now, partitioning q~ into q~+ and q~c, we have 

(s q_ ~2N)~ +(~) -_ _ g  (44) 

~ ] - -  ~ (~ '~  -~- ~2~~ (45)  

is thus the sum of two operators, one dissipative and one accretive. Then 
since (~C, g) = (r g), it is seen that ~g is a function of ~2. It may be verified 
that ~ vanishes if 2'4 does. In this particular case we may set up the inequality 

(u, (s + ~250u) ~< (u, 5~u) ~< 0, Vu in 54 ~ (46) 

which would then imply that ~g(~) decreases monotonically with ~, i.e., that 
~(~,) ~ ~,(~), ~, >~ ~.(zgl Remembering that in the general case 

~. (0  = (r176 g) 

and that by the arguments of the first part of this section r  is expandable as 
a series in ~-~, it is evident that ~:g may also be expanded as a power series in 
~-~. However, the foregoing discussion indicates that ~:g(~) is an even function 
of ~. We may conclude, then, that the even-parity tensor elements approach 
their asymptotes ~:o(oo) at least as quickly as ~-". 

The preceding discussion was predicated on the assumption that .~" was 
independent of magnetic field strength, i.e., ~. In certain cases (2s~ this is not 
so.. However, ~ in general is never likely to have more than a polynomial 
dependence on ~. Let the minimum and maximum powers of ~ in -~" be N 
and M. Then retracing the argument mutatis mutandis, the asymptotic 
dependence of the odd and even elements will be ~N+z and ~2N as ~ -+ 0 and 
~-M-a and ~-2(Mvl) as ~---* oo. 
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4. D I S C U S S I O N  

In summary, the last section has demonstrated that in the original 
Waldman-Snider equation in the linearized approximation the collision 
superoperator is bounded in the metric adopted. Consequently, the thermal 
conductivity and shear viscosity tensors retain well-defined limiting forms as 
the magnetic field strength increases indefinitely. The asymptote is zero 
for those tensor elements that have odd symmetry when a rotation is carried 
out about the field line. Even tensor elements are even functions of ~, the 
measure of field strength, and for simple molecules approach their asymptotes 
as ~2 and ~-~, odd elements as .~ and ~-1. The extension to more complicated 
molecules is outlined at the end of the last section. 

The only information used was the boundedness of ~ and o~ and their 
behavior under symmetry transformations. Without further input no more 
can be inferred. For instance, the well-known double frequency dependence 
found in most experiments (a) can be derived if, besides the usual expansion 
functions scalar in J ,  one tensor function, [jj](2) or W[JJ] <2), is included in 
the trial function approximating r Furthermore, without any definite 
knowledge as to the matrix elements of ~ and 5~a it is difficult to predict 
the direction of the Senftleben-Beenakker effect or the direction of approach 
to the asymptotes. 

The difficulty in predicting the sign of A~:g(~) = ~g(~) -- ~g(0), or, in 
the equivalent problem, of ascertaining whether the operator fr [Eq. (45)] is 
dissipative or not, is connected with the tendency of ~,~+ components of ~ to 
maximize ~g and of ~ _  components to minimize it.<5.24.~~ Freezing out terms 
of opposite symmetry then has opposite effects on A ~:g. This also introduces 
an error of uncertain sign in calculations made with trial function approxi- 
mations to r Although the second tendency is contrary to the usual behavior 
of kinetic theory approximations, <81) it can be understood when it is recalled 
that ~ may be regarded as a measure of the steady-state deviation from 
equilibrium <32~ and that cross matrix elements of W+ and ~ _  components 
increase the number of relaxation modes of q~+. This should increase the rate 
of equilibration and minimize ~:~. On the other hand, truncating the number 
of #f+ terms in ~+(0) is equivalent to requiring certain W+ modes to relax 
infinitely quickly, again leading to a decreased ~:g. 

One possible procedure to estimate the error would be to calculate 
successively better upper and lower bounds to ~:~(~) until the "noise" of the 
calculation is substantially less than A~:g(~). Another would be to estimate 
upper and lower bounds directly on the difference 

A~:g(~) ~ ~(q~+(0), [~ -- ~(5~ + ~)- l~]q~+(0))  (47) 

Either of these procedures, however, requires lower bounds to the spectrum 
of 5~ and the computation of many more matrix elements than are carried 
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in the present  theories/1~ This is p r o b a b l y  no t  necessary, because the internal  
consis tency o f  t runca ted  tr ial  funct ion theories with exper iment  indicates  tha t  
they p r o b a b l y  have a t ta ined  an accuracy  sufficient for  mos t  purposes.  This 
implies a h igh  degree o f  d iagonal i ty  in ~ and  suggests an a pp rox ima t ion  
leading to a wel l -known relat ion.  Star t ing with the inequal i ty  

q_ ~2~ > / s  q_ ~ 2 j  (48) 

we find the fol lowing chain of  inequali t ies:  

AG(~) > ~'(~+(0), [50 - ~ 'S:(~ + ~'~)-l~]&(O)) 

~ (~+(0), [~1  - ~ l o ( ~ o ) - ~ o d ~ + ( O ) )  

~> (q~l(O), G I ~ ( O ) )  ~ (q~(O), 5q~,~dO)) (49) 

Tha t  is, the Senf t l eben-Beenakker  effect is approx ima te ly  p ropo r t i ona l  to the 
en t ropy  p roduc t ion  or  the re laxat ion  rate  o f  the componen t  o f  ~(0) with 
Jx ,  J~ polar iza t ion .  
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